
コメントとコーディング規約

これまではコードの書き方を学んできまし
た。ソースコードの中には、コードの内容を
説明する「コメント」を記述することができ
ます。本章では、コメントの記述方法につい
て説明します。
また、よりよいコードにするためのコーデ

ィング規約についても説明します。

C H A P T E R

11

11_Java_part2_chap11.qx  08.1.30  16:23  ページ203



コメントとは

まずは、次のコードを見てください。次のコードは、前の章で使用したSample9_4に

コメントを追加したものです。

●コメントを追加したSample9_4のコード（Sample9_4.java）

package sample.sample11;

public class Sample9_4 {

public static void main(String[] args) {

int[] points = new int[30]; 

initializeArray(points);

double averagePoint = calculateAverage(points);

System.out.println("このクラスの平均点は" + averagePoint + "点です");

printPoints(points);

}

public static double calculateAverage(int[] points) {

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

return averagePoint;

}

private static void printPoints(int[] points) {

for (int i = 0; i < points.length; i++) {

System.out.println("出席番号" + (i + 1) + "番は、" +

points[i] + "点です");

}

}

//平均点を表示します

/* 平均点を求めます * /

//配列を初期化します

//長さが30の配列を宣言します

/**
* メインメソッドです。

* /

11-1

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

204

11_Java_part2_chap11.qx  08.1.30  16:23  ページ204



private static void initializeArray(int[] points) {

points[0] = 90;

points[1] = 62;

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

}

}

コードを記述するには大きく2通りの方法があります。

●行コメントの記述方法

//コメント

●ブロックコメントの記述方法

/*
コメント

*/

行コメントの場合は、"//"を記述した位置から行の終わりまでがコメントになります。

ブロックコメントは、"/*"と"*/"の間がコメントとなります。この間にコメントを記述

することができます。ブロックコメントは複数行にわたって記述することができます。

コメントには制約がありませんので、自由に記述することができます。たとえば、プ

ログラムの説明文などプログラムの処理と関係のあることや、プログラムの処理と関係

のないことであってもメモとして記述することができます。このメモをコメントと呼び

ます。コンパイラはコメントを無視して処理するため、コメントにはなにを書いてもプ

ログラムの動作に影響を与えません。

コメントは、コードを読みやすくするために、コードに対して補助的な役割を果たし

ます。

適切なコメント

前節の最後で、「コメントは、コードを読みやすくするために、コードに対して補助的

な役割を果たします。」と書きました。しかしコメントを追加したSample9_4のコードを

11-2

205

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ205



読むと、冗長なもののように見えます。

●コメントを追加したSample9_4のコード（その1）

public class Sample9_4 {

public static void main(String[] args) {

public static void main(String[] args)と記述してあれば、そのメソッドは誰がどう見

てもメインメソッドでしょう。

●コメントを追加したSample9_4のコード（その2）

int[] points = new int[30]; 

これもコメントがなくても、長さが30の配列を宣言していることは一目瞭然です。

●コメントを追加したSample9_4のコード（その3）

initializeArray(points);

メソッド名を見れば配列を初期化していることがわかります。英語を理解できないと

いう人がいるかもしれませんが、この程度の英単語であれば一般教養のレベルと言って

よいでしょう。

このように、読めばわかるコードに対して冗長なコメントを記述することは、「不適切

なコメント」と言えます。では、どのようなコメントが適切と言えるのでしょうか？

コードを読んだだけではわからないようなことを記述すると、そのコメントの価値は

高いものと言えます。たとえば次のようなものがあげられます。

・コードの意図を説明したもの。

・書籍の見出しや目次のように、コードの要約になっているもの。

・著作権の告知やバージョン情報といった、コードでは表していない情報。

また、コメントの記述には以下のことに注意する必要があります。

・コメントを記述したあとにコードを修正すると、コードとコメントに食い違いが生じ

る場合があります。

//配列を初期化します

//長さが30の配列を宣言します

/**
* メインメソッドです。

* /

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

206

11_Java_part2_chap11.qx  08.1.30  16:23  ページ206



・冗長なコメントが大量に記述されている場合、コードを読みづらくする可能性があり

ます。

コメントにはコードほどの厳格さはありません。コンパイラによるチェックがなにも

行われないからです。あなたがコメントを読んだときに、間違った内容が記述されてい

る場合があるかもしれません。しかし、他人のコードを読むとき、あるいは、自分が書

いたコードであっても1年後や2年後に読んだ場合には、コメントはコードを読む助けに

なるでしょう。また、コメントを記述する際に、コメントが書きにくいと感じることが

あるかもしれません。それは、コードが複雑でよくない場合や、自分自身がコードを理

解していない場合が考えられます。コメントを書くことで、よりよいコードに修正する

きっかけが生まれることもあります。

最適なコメントを考えるのは難しい作業ですが、コメントの記述内容を見直した次の

コードを見ると、最初のコードと比べ、コードが理解しやすくなっていると思います。

●コメントの記述内容を見直したコード（Sample9_4.java）

package sample.sample11.better;

public class Sample9_4 {

public static void main(String[] args) {

int[] points = new int[30];

initializeArray(points);

double averagePoint = calculateAverage(points);

System.out.println("このクラスの平均点は" + averagePoint + "点です");

printPoints(points);

}

public static double calculateAverage(int[] points) {

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

return averagePoint;

}

/**
* 長さ30のint型の配列を用意し、その平均値の表示と、各値を表示します。

* /

207

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ207



private static void printPoints(int[] points) {

for (int i = 0; i < points.length; i++) {

System.out.println("出席番号" + (i + 1) + "番は、" +

points[i] + "点です");

}

}

private static void initializeArray(int[] points) {

points[0] = 90;

points[1] = 62;

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

}

}

Javadoc

ブロックコメントを拡張したコメントに「ドキュメンテーションコメント」というも

のがあります。"/**"ではじまり、"*/"で終わります。

●ドキュメンテーションコメントの記述方法

/**
ドキュメンテーションコメント

*/

ドキュメンテーションコメントを記述すると、ツールを使うことでAPIドキュメント

を機械的に生成することができます。APIとはApplication Program Interfaceの略で、ク

ラスの集合のようなものです。各ソフトウェアの開発者がすべての機能を一からプログ

11-3

//面倒なので、ループで同じ値を代入する

//最初の3件は任意の値を代入する

/**
* 配列の値を初期化します。

* サンプルコード用の値を代入しているため、値の意味、規則性はありません。

* /

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

208

11_Java_part2_chap11.qx  08.1.30  16:23  ページ208



ラミングするのは困難で無駄が多いため、多くのソフトウェアが共通して利用する機能

は、APIというまとまった形で提供されています。JavaのAPIドキュメントは、

http://java.sun.com/javase/ja/6/docs/ja/api/index.html

から参照することができます。

ドキュメンテーションコメントから、JDKの「Javadoc」というツールを使って自動的

にマニュアルを生成することができます。そのため、「Javadocコメント」とも呼びます。

略してこのコメントを「Javadoc」と呼ぶことが多いです。また、APIドキュメントを

「Javadoc」と呼ぶこともあります。

● Javadocコメントを記述したコード（Sample9_4.java）

package sample.sample11.javadoc;

public class Sample9_4 {

public static void main(String[] args) {

int[] points = new int[30];

initializeArray(points);

double averagePoint = calculateAverage(points);

System.out.println("このクラスの平均点は" + averagePoint + "点です");

printPoints(points);

}

public static double calculateAverage(int[] points) {

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

/**
* 長さ30のint型の配列を用意し、その平均値の表示と、各値を表示します。

*
* @param args この引数は使用していません

* /

/**
* Sample9_4にJavadocコメントを記述した例です。

*
* @version 1.0

* @author Satsohi Kimura

* /

209

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ209



}

double averagePoint = sumPoint / points.length;

return averagePoint;

}

private static void printPoints(int[] points) {

for (int i = 0; i < points.length; i++) {

System.out.println("出席番号" + (i + 1) + "番は、" +

points[i] + "点です");

}

}

private static void initializeArray(int[] points) {

points[0] = 90;

points[1] = 62;

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

}

}

Javadocには、単純な文章の他に、@version、@author、@paramといった特殊な記述

をすることで、バージョンや作成者情報であることを示すことができます。このアット

マーク（@）ではじまる記述を「タグ」と呼びます。

EclipseからAPIドキュメントを生成する方法は次の図を参考にしてください。

プロジェクトを右クリックし、「エクスポート」を選択します。

//面倒なので、ループで同じ値を代入する

//最初の3件は任意の値を代入する

/**
* 配列の値を初期化します。

* サンプルコード用の値を代入しているため、値の意味、規則性はありません。

* /

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

210

11_Java_part2_chap11.qx  08.1.30  16:23  ページ210



■図11-3-1 「エクスポート」を選択

「エクスポート」ダイアログが表示されるので、「Java＞Javadoc」を選択し、「次へ」

ボタンをクリックします。

■図11-3-2 「エクスポート」ダイアログ

「Javadocが生成される型の選択」で、どのクラスのJavadocを生成するのかを選択し

211

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ211



ます。今回はすべてのクラスを選択しました。

「次の可視性を持つメンバーにJavadocを作成」で「protected」を選択します。一般

的に、Javadocを生成するときの設定は「protected」を選択し、「終了」ボタンをクリッ

クします。protectedの意味については、第13章「クラスを拡張する」で説明します。

■図11-3-3 「protected」を選択

「Javadocロケーションの更新」ダイアログが表示されたら、「すべてはい」をクリック

します。すると、Javadocの生成が開始します。

■図11-3-4 「Javadocロケーションの更新」ダイアログ

出力先をデフォルトのまま指定しなかったので、Javadocの生成が終了すると、パッ

ケージ・エクスプローラに「doc」というフォルダが作成されます。この中にある

index.htmlを右クリックし、「システム・エディター」を選択します。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

212

11_Java_part2_chap11.qx  08.1.30  16:23  ページ212



■図11-3-5 「システム・エディター」を選択

するとブラウザが起動し、生成されたJavadocを見ることができます。

■図11-3-6 生成されたJavadocの例

213

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ213



タグを使用して情報記述した場合は、次の図のように出力されます。

■図11-3-7 タグを付けたクラスのJavadocの例

ここで紹介したタグ以外にも、Javadocで使用できるタグがあります。それらについ

ては、付録C-1を参照してください。

TODOコメント

コメントの中には特別な意味を持ったものがあります。

たとえば、「TODO（スペース）」ではじまるTODOコメントがあります。TODOとは

「To do」のことで、「やらなければならないこと」という意味です。このTODOコメント

を記述すると、Eclipseの「タスク」ビューに該当行が表示されます。タスクビューに一

覧で表示されるので、忘れてはならないことなどもTODOコメントで記述するとよいで

しょう。

TODOコメント以外の特殊なコメントには、FIXMEコメントとXXXコメントがありま

す。「コードが正しくない、または正しく動いていない、修正が必要」という場合に、

FIXMEコメントを記述します。XXXコメントは、「正しくないがとりあえず動いてはい

る」という場合に記述します。

11-4

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

214

11_Java_part2_chap11.qx  08.1.30  16:23  ページ214



'表11-4-1 特殊なコメント

これらのコメントはいずれも大文字で記述し、あとにスペースを含め、そのうしろに

コメントを記述します。また、この3つのコメントはタスクビューに表示されます。

筆者の経験上、XXXコメントはあまり使いません。正しくないということは、将来修

正するということです。ですので、XXXコメントではなく、TODOコメントやFIXMEコ

メントを使用しています。

'表11-4-2 特殊なコメントの例

タスクビューに表示されるコメントは、TODOなどが記述された「行のみ」です。次

のようなコメントは、タスクビューには「TODO」としか表示されないので注意してく

ださい。

●複数行に分かれたTODOコメント

コーディング規約

世の中にはさまざまなコーディング規約が存在します。一般的なコーディング規約が

述べている項目にはおもに次のようなものがあります。

・ネーミング規約に関する項目

・コードのフォーマットに関する項目

・多くの人が間違う問題に関する項目

「ネーミング規約に関する項目」については、本書でも取り上げました。きちんと表現

している名前を付けるというものでした。本書で述べた内容よりも、さらに細かい規約

11-5

//あとで実装する（とりあえず、trueを返すようにしておく）。

//TODO

215

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

TODO やらなければならないこと

FIXME 正しくない。正しく動いていない。修正が必要

XXX 正しくないがとりあえず動いてはいる

TODOコメント //TODO 変数名をわかりやすく変更する

TODOコメント //TODO このメソッドはあとで作成

FIXMEコメント //FIXME 第二引数がfalseの場合の動作が正しくないので要修正

FIXMEコメント //FIXME テストが失敗するのであとで修正

11_Java_part2_chap11.qx  08.1.30  16:23  ページ215



を設けている場合もあります。

「コードのフォーマットに関する項目」については、1メソッドの行数は20行以下とい

ったコードサイズに関するものから、カッコの前後にスペースを設けるか設けないかと

いった、細かい内容まで存在します。これは、Eclipseのフォーマット機能を使うことで

容易に実現可能です。コードサイズについては後述します。

「多くの人が間違う問題に関する項目」については、「このようなコーディングをする

とこういった不具合を招く可能性があるので、次のようにコーディングしてください。」

といった内容が具体的に書かれている場合があります。このような項目については、バ

グを発生させないための参考になるテクニックが多くあります。

これらの規約は、「コードの可読性を上げる」「バグを抑制する」など、よりよいコー

ドにするためのものです。フリーで利用できるJavaのコーディング規約には次のものが

あります。

一般的な規約についてはこれらを参考にしてください。

Javaコーディング規約2004

http://www.objectclub.jp/community/codingstandard/JavaCodingStandard2004.pdf

Java コーディング標準（オブジェクト倶楽部バージョン）

http://www.objectclub.jp/community/codingstandard/CodingStd.doc

http://www.objectclub.jp/community/codingstandard/CodingStd.pdf

Java 言語 コーディング規約

http://www.tcct.zaq.ne.jp/ayato/programming/java/codeconv_jp/

プログラムサイズ
さて、プログラムサイズに関してですが、プログラムにはさまざまなサイズがありま

す。たとえば、次のような項目があげられます。

・パッケージの数

・クラスの数

・1クラスの行数

・1クラスのメソッドの数

・1クラスの変数の数

・1メソッドの行数

・1行の文字数

「1クラスのコードが10万行を超えている」、また、「1万行近いメソッドがある」とい

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

216

11_Java_part2_chap11.qx  08.1.30  16:23  ページ216



ったことを、筆者は聞いたことがあります。このような巨大なコードをどう思いますか？

決してよいコードとは言えません。

一般的に巨大なコードは短いコードよりもバグの発生頻度が増えると言われています。

たとえば、同じ1000行のコードでも、1メソッドで1000行の場合と、1000行の処理が

20個のメソッドに分かれている場合とでは、1メソッドで1000行の場合の方がバグが多

いということになります。また、巨大なコードは、可読性も悪くなります。

このような観点から筆者がプログラミングするときに意識している規約があります。

それは、「15ポイントルール」というものです。

15ポイントルール
15ポイントルールとは、メソッドのサイズに関するルールです。それは、コードにポ

イントを付け、そのポイントの合計が15ポイント以内になるようにメソッドを作成する

というものです。

ポイントの換算ルールについて説明します。

コードを記述しなければバグは発生しません。コードを書くたびにバグが含まれる確

率は増えていきます。単純なステートメントよりも、条件分岐やループ処理を含んだ方

がバグを含む確率は大きいです。このような考え方がポイントの換算ルールのベースで

す。また、本書で説明しているように、変数名の長さが適切でない場合や深くネストさ

れたコードも、バグを含む確率は大きくなります。

q 1ステートメント

1ポイントとします。行数ではなくステートメント数をカウントします。ステートメン

トがない空行やカッコだけの行は、ポイントに含めません。ただし、初期設定（引数な

どから値の取得）を行うステートメントは除きます。また、catchも1ポイントとして換

算します（catchについては、第17章「例外」で説明します）。

● 2ポイントのコード

logger.debug("Hello, world!");

logger.debug(1 + 1);

● 0ポイントのコード

private static Person person = new Person();

public static void main(String[] args) {

String name = args[0];  

String personName = person.getName();  //オブジェクトから値を取得

//引数から値を取得

217

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ217



q 条件文（if、switch、三項演算子）

2ポイントとします。ただし条件式が複数存在する場合には、条件式1つにつき1ポイ

ントを加算します。

● 2ポイントのコード

if(20 < age) {

● 3ポイントのコード

if(20 < age && isMale == false) {

● 4ポイントのコード

if((20 < age && isMale == false) || 60 < age) {

q ループ（for、while）

3ポイントとします。ただし条件式が複数存在する場合には、条件式1つにつき1ポイ

ントを加算します。

● 3ポイントのコード

for(String val : array) {

● 3ポイントのコード

while(isStop == false) {

● 4ポイントのコード

while(isStop == false || isPause == false) {

q 変数名

変数名が20文字を超える変数を定義した場合は、1ポイントとします。

● 0ポイントのコード

int velocity;

● 1ポイントのコード

int maximumVelocityOfTrain;

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

218

11_Java_part2_chap11.qx  08.1.30  16:23  ページ218



q 階層

多くのコーディング規約では、「1行が半角80文字を超えないようにする」という項目

があります。理由をきちんと説明している規約はあまり目にしたことがありませんが、

インデントが深いコードを書かないための項目です。

これを定量的にポイントに換算します。

ブロックの階層が3を超える場合、ポイントを加算します。4階層目のブロックを1ポ

イント、5階層目のブロックを2ポイントとします。5階層のブロックの場合、4、5階層

目のポイントで計3ポイント加算されます。

● 9ポイントのコード

public static void main(String[] args) {

if (isA()) { 

if (isB()) { 

if (isC()) { 

if (isD()) { 

}

}

}

}

}

これ以上メソッドを分割できない、最適な細分化がされているなど、処理の最小の塊

と考えてよい場合には、15ポイントを超えてもかまいません。

また、15ポイントを超えるようなコードを書く場合には、そのコードをよく理解して

いないということも考えられます。たとえば料理を作るときに、「下ごしらえ」や「隠し

味」にあたる工程があります。しかし、その料理についての知識がまったくない場合、

すべての作業が単なる手順としてのみ認識されてしまうということに似ています。

●細分化されている

料理する() {

下ごしらえする();

メインの調理をする();

隠し味を加える();

}

//4階層目（ifで2ポイント加算、4階層目なのでさらに1ポイント加算）

//3階層目（ifで2ポイント加算）

//2階層目（ifで2ポイント加算）

//1階層目（ifで2ポイント加算）

219

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ219



●細分化されていない

料理する() {

XXXを切る();

XXXをoooに漬ける();

YYYを切る();

XXXをYYYと一緒に炒める();

pppを加える();

qqqを加える();

rrrを加える();

}

また、メソッドに分割していなくても、空行を挿入することで細分化することはでき

ます。次のようなコードであれば、空行の前後で処理がまとまっているということがわ

かります。「料理する()」メソッドが15ポイントを超えていなければ、別のメソッドに

分割しなくてもよいかもしれません。

●空行による細分化

料理する() {

XXXを切る();

XXXをoooに漬ける();

YYYを切る();

XXXをYYYと一緒に炒める();

pppを加える();

qqqを加える();

rrrを加える();

}

「正しいソースの書き方養成ギブス」
コードが15ポイントルールを守っているかどうかをチェックするツールを本書の読者

のために作成しました。このツールはEclipseプラグインから利用できます。

これは、「正しいソースの書き方養成ギブス」という意味から略して「ギブス」と名付

けました。つねにギブスを使用していると、正しいソースの書き方が身に付くように、

という思いがあります。

ギブスでは、15ポイントルールのチェック以外の項目についてもチェックを行ってい

ます。チェックしている項目は次の通りです。なぜそのようなチェックを行うのかとい

う理由の大半は、本書で説明済みです。カッコ内の章または節を参照してください。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

220

11_Java_part2_chap11.qx  08.1.30  16:23  ページ220



q 15ポイントルールを守っているかをチェック

メソッドのサイズが15ポイントを超えている場合に警告を表示します（この節「コー

ディング規約」参照）。

q switch文にdefault句を記述しているかをチェック

defaultブロックは、if-else文のelseブロックのような使い方ではなく、通常おこりえ

ない場合を記述しておくとよいです。つまり例外をスローするコードである場合がほと

んどを占めると言ってもよいでしょう。例外をスローするようにしておくと、switchの

入力値として想定外の値が使用された場合にすぐに気づくことができます。そのため、

default句を記述していない場合、ギブスは、記述するように促します（第 6章6節

「switch文」参照）。

●正しいdefault句の使い方

switch (month) {

case JANUARY:

(……中略……)

case DECEMBER:

(……中略……)

default:

throw new IllegalArgumentException("不正な月 : " + month);

}

q マジックナンバーを使用していないかチェック

定数ではなく、マジックナンバーを使用していないかチェックします（第9章1節「定

数とは」参照）。

q きちんとカッコを使用しているかチェック

たとえば、ifブロックの中にステートメントが1しかない場合でもカッコを使用するよ

うに促します（第6章1節「if文」参照）。

q 不要な修飾子を使用していないかチェック

不要な修飾子は、不要な情報をコードに記述しているということです。不要な修飾子

を記述している場合は警告を表示します。また、不要な修飾子は無用な横スクロールを

発生させます（第15章1節「インターフェースとは」参照）。

q 不正な例外処理をしていないかをチェック

例外をキャッチし、なにも処理しない。または、デバッグログのみなど、不正な例外

処理を行っている可能性がある場合には、警告を表示します（第17章「例外」参照）。

221

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

11_Java_part2_chap11.qx  08.1.30  16:23  ページ221



q 標準出力を使用していないかチェック

ログ出力ではなく、標準出力を行っている場合、警告を表示します（第16章1節「入

出力」参照）。

q mainメソッドを使用していないかチェック

mainメソッドは、アプリケーションを起動したときに呼び出されます。実際の仕事の

現場でmainメソッドを記述することはほとんどありません。動作確認を行うためにmain

メソッドを記述しているならば、JUnitでテストを行うようにしてください。そのような

警告を表示します（第19章「テスト」参照）。

また、mainメソッドを記述するクラスは、Mainという名前にすることが慣習となって

います。Mainクラスにmainメソッドを記述している場合には、警告を表示しません。

q 例外のオブジェクトを生成後きちんとthrowしているかチェック

本書の執筆中に、あるベテランプログラマーが行っていた間違いです。このときは運

よくコードレビュー時に発見できましたが、そうでない場合の影響は致命的なものです。

例外のオブジェクトの生成だけしか行っていない場合には、警告を表示します（例外に

ついては、第17章「例外」で説明します）。

●間違ったコード

} catch(Exception e) {

new RuntimeException(e);

}

●本来のコード

} catch(Exception e) {

throw new RuntimeException(e);

}

q スペルチェック

コードに記述している単語が、本当に存在する英単語かをチェックします。これは、

単純なスペルミスの発生に気づくだけではなく、間違えた英単語を使用している場合に

も有効です。日本人プログラマーがよく使用する動詞の「regist」という単語は存在せ

ず、「register」が正しいというのは有名な話です。このような単語を使用しないために

もスペルチェックは有効です。辞書に存在しない英単語を使用した場合、警告が表示さ

れます。そのときは、辞書で確認をするようにしてください。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

222

11_Java_part2_chap11.qx  08.1.30  16:23  ページ222



新しいEclipseにギブスをインストールする方法などは、下記のURLでサポートし

ていますので、こちらをごらんください。

http://dodododo.jp/java/gips/index.html

まとめ

・"//"を記述した位置から行の終わりまでがコメントになります。

・ブロックコメントは、"/*"と"*/"の間がコメントになります。

・コメントには、任意のメモを記述することができます。

・コードの意図を説明したもの、コードの要約になっているものをコメントとして記述

するとよいです。

・Javadocを利用するとAPIドキュメントを出力することができます。

・TODOコメント、FIXMEコメント、XXXコメントという特殊なコメントがあります。

コードを補助するようなコメントは記述するように心がけましょう。またJavadocコ

メントも利用者に有効な情報を与えることができます。

11-6

223

11

コ
メ
ン
ト
と
コ
ー
デ
ィ
ン
グ
規
約

Column ギプス／キブス

骨折などの怪我をしたとき、患部を固定・保護するために包帯を石膏で固めて使用
するのがギプスです。ギプスと聞いて、漫画「巨人の星」の「大リーグボール養成ギ
プス」を思い出す人もいることでしょう。
このギプスは、「石膏」を意味するドイツ語の「Gips」に由来する言葉です。綴りを

見ればわかるように、その読みは「ギプス」です。「ギブス」ではありません。
さて、2007/11/25現在のGoogleでの検索件数を比べてみましょう。

'表11-5-1 ギプスvsギブスの検索結果

どちらかと言えば、「ギブス」の方が主流のように思えます。
ギブスの方がピンとくる人の方が多いようなので、ツールの名前はギブスにしまし

た。ただし、英語名はgipsとしています。

ギプス 295,000件

ギブス 492,000件

大リーグボール養成ギプス 550件

大リーグボール養成ギブス 10,400件

11_Java_part2_chap11.qx  09.3.4  3:42 PM  ページ223



クイズ
Q11-1

次の を埋めてください。

行コメントを記述するには、 に続けてコメントを記述します。

Q11-2

次の を埋めてください。

ブロックコメントを記述するには、 から までの間にコメントを記述しま

す。

Q11-3

次の を埋めてください。

ドキュメントコメントを記述するには、 から までの間にコメントを記述

します。

Q11-4

次の を埋めてください。

を説明したもの、 になっているものをコメントとして記述するとよいで

す。

BA

BA

BA

11-7

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

224

Column スクリーンセイバーの解除方法

パソコンの電源を入れたまま使用せずに放置していると、設定にもよりますが、多
くのパソコンはスクリーンセイバーに切り替わります。スクリーンセイバーを解除す
るには、キーボードのキーを押すなど、パソコンに対してなにかしら入力をする必要
があります。
コンピュータに詳しくない人の多くは、「スペース」キーや「Enter」キーを押した

り、マウスをクリックします。しかしそのようなことをすると、画面上の意図しない
ボタンをクリックしてしまうなど、なにが起こるのかわかりません。このようなスク
リーンセイバーの解除方法はよくありません。
「Shift」キーを押すのが、よいスクリーンセイバーの解除方法といえます。

11_Java_part2_chap11.qx  08.1.30  16:23  ページ224


