
これまでのコードを改善する

この章では、これまでのコードをよりよく
することができるJavaプログラミングの技法
と、それを実現するEclipseの機能を説明しま
す。単によりよくするだけの機能というわけ
ではなく、非常に重要な技法です。この技法
をきちんと使いこなせることが、優秀なプロ
グラマーになるための必須条件ともいえます。

C H A P T E R

9

09_Java_part2_chap09.qx 08.1.30 16:21 ページ151

定数とは

最初の改善対象のコードは、Sample8_5です。どこを改善するのかというと、最初に

配列を定義している部分です。配列の各要素の0、2、5と記述していた箇所を改善しま

す。

●Sample8_5.java

public class Sample8_5 {

public static void main(String[] args) {

int[] a = { 0, 5, 5, 0 };

int[] b = { 2, 5, 2, 2, 5, 0 };

int[] c = { 5, 0, 2, 0, 2, 5, 2 };

int index = 0;

boolean 同じ手を出していない = true;

while (同じ手を出していない) {

if (a[index % a.length] == b[index % b.length] &&

b[index % b.length] == c[index % c.length]) {

同じ手を出していない = false;

} else {

index++;

}

}

System.out.println((index + 1) + "回目で全員が同じ手を出しました");

}

}

改善後のコードのクラスをSample9_1としています。改善後のコードでは、0、2、5

であった部分が、STONE、SCISSORS、PAPERに変わっています。0、2、5だけを見て

も意味がわかりませんが、STONE、SCISSORS、PAPERであれば、石、はさみ、紙、つ

まり、グー、チョキ、パーということがわかりやすくなっています。

STONE、SCISSORS、PAPERというのは、定数として定義されています。定数は、変

数と同じように参照可能です。大きな違いは、変数が変更可能な値であったのに対し、

定数は変更不可能な定まった値という点です。定数はクラスのブロックに記述します。

変数と区別が付きやすいように、定数は「大文字とアンダースコア（_）を組み合わせた

名前」にします。また、変更できない最終的な値ということでfinal修飾子が型の前に付

いています。変数に final修飾子が付いていると、その変数の値は変更不可能になりま

す。privateとstatic修飾子については、のちの章で説明します。

9-1

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

152

09_Java_part2_chap09.qx 08.1.30 16:21 ページ152

●改善後のコード（Sample9_1.java）

public class Sample9_1 {

private static final int STONE = 0;

private static final int SCISSORS = 2;

private static final int PAPER = 5;

public static void main(String[] args) {

int[] a = { STONE, PAPER, PAPER, STONE };

int[] b = { SCISSORS, PAPER, SCISSORS, SCISSORS, PAPER,

STONE };

int[] c = { PAPER, STONE, SCISSORS, STONE, SCISSORS,

PAPER, SCISSORS };

int index = 0;

boolean 同じ手を出していない = true;

while (同じ手を出していない) {

if (a[index % a.length] == b[index % b.length]

&& b[index % b.length] == c[index % c.length]) {

同じ手を出していない = false;

} else {

index++;

}

}

System.out.println((index + 1) + "回目で全員が同じ手を出しました");

}

}

定数化を行うと、値を変更したくなった場合に定数の箇所のみを変更すればよいとい

うメリットがあります。たとえば、商品の値段を計算するプログラムがあり、計算に消

費税を使用していたとします。消費税の税率が変更になった場合に定数化を行っておけ

ば1箇所の変更で済みますが、そうでない場合の変更は容易ではないでしょう。また、

タイプミスした場合にコンパイルエラーとして検知することができるというメリットも

あります。今回のサンプルの例であれば、最初の配列を{ 0, 6, 5, 0 };と、間違えて6を入力

してもコンパイルが通ります。しかし定数化を行っておけば、{ATONE, PAPER, PAPER,

STONE };と、最初のSをAとタイプミスした場合、ATONEはどこにも定義されていない

のでコンパイルエラーとなり、間違いに気づくことができます。

今回の変更のように、プログラムの動いた結果は変更前と同じままで、内部のコード

を改善することを「リファクタリング（refactoring）」と呼びます。本来は、リファクタ

リングの前後で動作結果が変わらないことを確認するためにテストを行います。テスト

については、第19章「テスト」で説明します。

153

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ153

Eclipseを使用すると、修正箇所を一度の操作で定数にすることができます。

ss「リファクタリング（定数の抽出）」（CD-ROM/movie/const.html）

いちばん先頭の「0」を選択して、右クリックします。

■図9-1-1 修正したい箇所を選択してからソースを右クリック

「リファクタリング＞定数の抽出」を選択します。

■図9-1-2 「リファクタリング＞定数の抽出」

動画参照�

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

154

09_Java_part2_chap09.qx 08.1.30 16:21 ページ154

定数名を入力します。ここでは、グーを意味する「STONE」と入力しました。そし

て、複数の箇所を同時に修正する場合には、「選択された式のすべてのオカレンスを定数

への参照で置換」にチェックします。「プレビュー」ボタンをクリックし、どのようにソ

ースが変更されるのか確認します。オカレンス（occurrence）とは、同じファイル内に

存在する同じ記述のことです。occurrenceという単語を日本語に直訳すると「存在」に

なります。

■図9-1-3 定数名の入力

プレビューのダイアログの「実行される変更」に変更がすべて表示されるので、一つ

一つ選択し、変更が正しいかを確認します。正しくない変更の場合にはチェックを外し

ます。ここでは、最後のint index = STONE;という箇所のチェックを外しました。

155

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ155

■図9-1-4 プレビューダイアログ

最後に「OK」ボタンをクリックすると、次の図のようにソースが変更されます。

■図9-1-5 変更後のソース

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

156

09_Java_part2_chap09.qx 08.1.30 16:21 ページ156

配列内の2と5に対しても同様の操作を行えば完了です。

●定数の構文

static final 型 変数名 = 定数値;

定数はあとから値を代入することができないので、宣言と同時に値を代入する必要が

あります。

157

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

Column 定数の反対

定数の反対の用語は、変数ではなく「マジックナンバー」と呼ばれます。
Sample8_5で言えば0、2、5のような数字です。このような数字は意味を持っていま
すが、プログラムを注意深く読まなければその意味がわかりません。ときには、プロ
グラムを読んだだけでは理解できないこともあります。
次のような理由で、マジックナンバーはプログラム中に含まれないことが好ましい

です。

・その数値の持つ意味がわかりづらい。
・数値を変更する場合に、複数の箇所を変更しなければならない可能性がある。

これらを避けるために、マジックナンバーが書いてある箇所を定数などに置き換え
るといった処置がとられます。定数には意味のわかりやすい名前を付けるため、コー
ドを見ただけで数値の意味を理解できるからです。定数の初期化の際に書かれる数値
は2や5といった値ですが、この値はマジックナンバーとは呼びません。
また、for文を実行するときの for (int i=0;i<length;i++)の0などは、iがループの回数

を示している変数なので、ループ回数を初期化しているという意味になります。この
ような場合の数字はマジックナンバーとは呼びません。for (int i=3;i<length;i++)であ
れば、なぜ途中から実行しているのかがわからないので、これはマジックナンバーと
なります。

Column 修飾子の記述順

定数の修飾子はprivate、static、finalの順で記述しましたが、実は、この修飾子の
記述順を変更してもプログラムは同じ動作をします。ただ、修飾子の記述順は、Java

言語仕様のセクション8.1.1、8.3.1、8.4.3で提案されています（http://java.sun.com/

docs/books/jls/second_edition/html/classes.doc.html）。その順番は次の通りです。

09_Java_part2_chap09.qx 08.1.30 16:21 ページ157

メソッドとは

次の改善対象のコードはSample7_7です。

●Sample7_7.java

public class Sample7_7 {

public static void main(String[] args) {

int[] array1 = { 9, 8, 7, 6, 5 };

int[] array2 = { 1, 2, 3 };

System.out.println("array1の要素");

for (int val : array1) {

System.out.println(val);

}

9-2

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

158

'表9-1-1 修飾子の記述順

private static final int STONE = 0;

static final private int SCISSORS = 2;

final private static int PAPER = 5;

このようなコードは、見た目が悪いだけではなく、同じ修飾子で修飾されていると
いうことが一見しただけではわからないですよね。同じ順で記述するように心がけて
おけば、一目でわかるコードになります。ですので、修飾子の順番を意識しながら記
述するようにしましょう。そのための指標として、この表の順を参考にするのがよい
でしょう。本書では、この表の順で記述します。なお、順番が異なるコードを書いた
場合は、「ギブス」によって指摘されます。

同じコード

記述順 修飾子

1 public

2 protected

3 private

4 abstract

5 static

6 final

7 transient

8 volatile

9 synchronized

10 native

09_Java_part2_chap09.qx 08.1.30 16:21 ページ158

System.out.println("array2の要素");

for (int val : array2) {

System.out.println(val);

}

System.out.println("array2をarray1に代入すると");

array1 = array2;

System.out.println("array1の要素");

for (int val : array1) {

System.out.println(val);

}

System.out.println("array2の要素");

for (int val : array2) {

System.out.println(val);

}

System.out.println("array2の2番目の要素を5にすると");

array2[1] = 5;

System.out.println("array1の要素");

for (int val : array1) {

System.out.println(val);

}

System.out.println("array2の要素");

for (int val : array2) {

System.out.println(val);

}

}

}

コードを見ると、同じことを記述している箇所があります。このような重複している

箇所を先ほどの定数のように1箇所にまとめることができます。1箇所にまとめたコード

のクラスをSample9_2としています。

●Sample9_2.java

public class Sample9_2 {

private static int[] array1s;

private static int[] array2s;

public static void main(String[] args) {

array1s = new int[]{ 9, 8, 7, 6, 5 };

159

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

同じコード

同じコード

09_Java_part2_chap09.qx 08.1.30 16:21 ページ159

array2s = new int[]{ 1, 2, 3 };

printArrays();

System.out.println("array2をarray1に代入すると");

array1s = array2s;

printArrays();

System.out.println("array2の2番目の要素を5にすると");

array2s[1] = 5;

printArrays();

}

private static void printArrays() {

System.out.println("array1の要素");

for (int val : array1s) {

System.out.println(val);

}

System.out.println("array2の要素");

for (int val : array2s) {

System.out.println(val);

}

}

}

mainメソッドを記述したときと同じようにコードの上から順番に記述することもでき

ますが、Eclipseのリファクタリング機能を使うと簡単にメソッドを分割することができ

ます。

まず、array1、array2をクラス変数にします。クラス変数については後述します。ま

た、クラス変数はフィールドの一種です。フィールドについても後述します。Eclipse上

では「フィールド」という表現がされています。

array1を選択したあと、ソースを右クリックして「リファクタリング＞ローカル変数

をフィールドに変換」を選択します。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

160

09_Java_part2_chap09.qx 08.1.30 16:21 ページ160

■図9-2-1 「リファクタリング＞ローカル変数をフィールドに変換」を選択

「ローカル変数をフィールドに変換」ダイアログが表示されます。フィールド名の入力

などができますが、今回はそのまま「OK」ボタンをクリックします。

■図9-2-2 「ローカル変数をフィールドに変換」ダイアログ

すると、変数がmainメソッドのブロックの上に移動します。

161

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ161

■図9-2-3 リファクタリング後

同様に、array2もクラス変数にします。

次は、同じコードの部分を共通化します。共通化したい部分のコードを選択します。

ss「リファクタリング（メソッドの抽出）」（CD-ROM/movie/method.html）

■図9-2-4 共通化したい箇所を選択

動画参照�

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

162

09_Java_part2_chap09.qx 08.1.30 16:21 ページ162

次に、「Alt」＋「Shift」＋「M」キーを押します。「M」は「Method」の頭文字です。

ソースを右クリックして、「リファクタリング＞メソッドの抽出」を選択しても同じこと

ができます。

「メソッドの抽出」ダイアログが表示されるので、抽出するメソッド名を入力し、「OK」

ボタンをクリックします。先ほどと同じように、プレビューでリファクタリング後のコ

ードを確認することもできます。

■図9-2-5 「メソッドの抽出」ダイアログ

すると、ソースを選択した部分と同じ箇所がprintArrays();に置き換わります。

■図9-2-6 リファクタリング後のコード

163

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ163

同じことを記述していた箇所が、printArrays();に置き換わりました。printArrays()

がなにを意味しているのかというと、mainメソッドの下に定義されています。定義する

方法はmainメソッドに似ています。

●メソッド定義の構文

void メソッド名() {

ステートメント;

}

メソッドのブロック内を除けば、mainメソッドとの違いは、メソッド名の違いと、メ

ソッド名のうしろのカッコ内にString[] argsがないという点です。String[] argsについて

は第9章3節の「メソッドの引数」で説明します。publicという修飾子がprivateに変わ

っていますが、この違いについては、第10章「クラスを利用する」で説明します。

また、printArraysメソッドの中では、array1sとarray2sの変数を参照しています。別

のメソッド、つまりmainメソッドの中に定義された変数を直接参照することはできない

ので、クラスブロックに変数を定義しています。第9章1節で説明した定数との違いは、

final修飾子がないことです。final修飾子が付かず、static修飾子が付く変数を、「クラス

変数」または「static変数」と呼びます。クラス変数はあとから値を代入することが可能

なので、宣言と同時に値の初期化をしてもしなくても動作します。そして、「定数」と

「クラス変数」を合わせて「クラスフィールド」、または「staticフィールド」と呼びます。

●クラス変数定義の構文

private static 型 クラス変数名;

■図9-2-7 「定数」「static変数」「クラスフィールド」の関係

staticフィールド�
クラスフィールド�

static変数�
クラス変数�

（static修飾子のみ）�

定数�
（static final修飾子）�

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

164

09_Java_part2_chap09.qx 08.1.30 16:21 ページ164

メソッドの引数

もう少し、Sample9_2を見てみましょう。

●Sample9_2のprintArraysメソッド

private static void printArrays() {

System.out.println("array1の要素");

for (int val : array1) {

System.out.println(val);

}

System.out.println("array2の要素");

for (int val : array2) {

System.out.println(val);

}

}

printArraysメソッドを見ると、array1とarray2に対して同じような処理を行っていま

す。これも1つのメソッドにまとめることができます。そのように修正したコードが

Sample9_3です。

●Sample9_3.java

public class Sample9_3 {

private static int[] array1 = { 9, 8, 7, 6, 5 };

private static int[] array2 = { 1, 2, 3 };

public static void main(String[] args) {

printArrays();

System.out.println("array2をarray1に代入すると");

array1 = array2;

printArrays();

System.out.println("array2の2番目の要素を5にすると");

array2[1] = 5;

printArrays();

}

private static void printArrays() {

printArray("array1", array1);

9-3

165

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ165

printArray("array2", array2);

}

private static void printArray(String arrayName, int[] array) {

System.out.println(arrayName + "の要素");

for (int val : array) {

System.out.println(val);

}

}

}

printArraysメソッドからprintArrayメソッドを呼び出すようにしています。

まず、printArrayメソッドを見てみましょう。メソッドの中で、arrayNameとarrayと

いう変数を参照しています。この変数はメソッドの中で定義されていませんし、クラス

変数としても定義されていません。どこを参照しているのかというと、printArraysメソ

ッドのメソッド名のうしろのカッコに定義している変数（①）を参照しています。この

変数を「引数」と呼びます。この引数の値は、printArraysメソッドから渡されます。

printArraysメソッドの中身も見てみましょう。最初にprintArrayメソッドを呼び出し、

引数に"array1"という文字列と、array1という配列を渡しています。そうすると、

printArrayが実行されます。そのときの引数の値が文字列の "array1"と、クラス変数の

array1です。printArrayの実行が終了するとprintArraysに戻り、2つ目のprintArrayが

同様に実行されます。

第9章2節では引数の説明を省略しましたが、引数を考慮すると、次のようにしてメ

ソッドを定義することになります。

●メソッド定義の構文

private static void メソッド名(型 引数名1, 型 引数名2, ...) {

ステートメント;

}

メソッドの戻り値

次は、Sample7_5を改善します。

●Sample7_5.java

public class Sample7_5 {

9-4

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

166

①

09_Java_part2_chap09.qx 08.1.30 16:21 ページ166

public static void main(String[] args) {

int[] points;

points = new int[30];

points[0] = 90;

points[1] = 62;

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

System.out.println("このクラスの平均点は" + averagePoint + "点です");

for (int i = 0; i < points.length; i++) {

System.out.println("出席番号" + (i + 1) + "番は、" +

points[i] + "点です");

}

}

}

先ほどと同じように、配列を初期化している部分をメソッドとし、それを呼び出すよ

うにします。コードの次の部分を選択し、先ほどと同じ手順でメソッドにします。

●メソッドにする箇所

points[0] = 90;

points[1] = 62;

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

167

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ167

最後のfor文もprintPointsというメソッドにしましょう。手順は先ほどと同様です。

最後に平均値を求めている部分も別メソッドにします。コードの次の部分を選択し、

平均値を計算するという意味のcalculateAverageというメソッド名にします。

●平均値を求めている部分

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

calculateAverageメソッドを見ると、いままでのメソッドとは少し異なる点がありま

す。

● calculateAverageメソッド

private static double calculateAverage(int[] points) {

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

return averagePoint;

}

staticのうしろがvoidではなく、doubleとなっている点がいままでと違うところです。

もう1点は、メソッドの最後にreturnというステートメントがあることです。

まず、return文から説明します。return文は、メソッドの呼び出し元に、メソッド本

体から特定の情報を返す場合に使用します。具体的には、calculateAverageメソッドか

ら平均値という情報を、呼び出し元であるmainメソッドに返しています。この返す情報

のことを「戻り値」と呼びます。戻り値は、double averagePoint = calculateAverage

(points);とすることによって、mainメソッド内ではaveragePointとして参照することが

できるようになります。

次に、staticのうしろがvoidではなくdoubleとなっているという点ですが、これは、メ

ソッドが情報を返すときに、どの型の情報を返しているのかということを表しています。

今回は平均値をdouble型で返しているので、このようになっています。一方、voidは戻

り値がないことを表しています。

return文は、メソッドの最後だけでなく、途中にも記述することができ、break文のよ

うな使い方もできます。void型の場合returnのうしろに値を書かず、セミコロン（;）で

終わります。具体的にはreturn;とします。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

168

09_Java_part2_chap09.qx 08.1.30 16:21 ページ168

戻り値も考慮すると、メソッド定義は次のようになります。

●メソッド定義の構文

private static 戻り値の型 メソッド名(型 引数名1, 型 引数名2, ...) {

ステートメント;

return ステートメント;

}

全体のコードは次のようになりました。

●改善後のコード（Sample9_4.java）

public class Sample9_4 {

public static void main(String[] args) {

int[] points = new int[30];

initializeArray(points);

double averagePoint = calculateAverage(points);

System.out.println("このクラスの平均点は" + averagePoint + "点です");

printPoints(points);

}

private static double calculateAverage(int[] points) {

double sumPoint = 0;

for (int point : points) {

sumPoint = sumPoint + point;

}

double averagePoint = sumPoint / points.length;

return averagePoint;

}

private static void printPoints(int[] points) {

for (int i = 0; i < points.length; i++) {

System.out.println("出席番号" + (i + 1) + "番は、" +

points[i] + "点です");

}

}

private static void initializeArray(int[] points) {

points[0] = 90;

points[1] = 62;

169

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

点数を格納する配列の定義

平均値の計算

平均値の表示
全点数の表示

配列の初期化

09_Java_part2_chap09.qx 08.1.30 16:21 ページ169

points[2] = 76;

for (int i = 3; i < 15; i++) {

points[i] = 75;

}

for (int i = 15; i < 30; i++) {

points[i] = 70;

}

}

}

mainメソッドの中を見ると、次のようになっていることがわかります。

・点数を格納する配列の定義

・配列の初期化

・平均値の計算

・平均値の表示

・全点数の表示

このプログラムが、なにを行っているのかという、プログラムの全体像がわかります

よね。メソッドを分割することによって、このようにコードを見ただけでプログラムが

なにを行っているのかをわかるようにできます。これは強力な技法です。

メソッドへ分割するときの指針の一つには、「ある処理の塊に対して名前を付けること

ができるなら、別メソッドに切り出す」ということがあげられます。

メソッド名

命名規則
メソッド名には任意の識別子を利用することができますが、一般的な命名規則が存在

します。まずは、そのメソッドの命名規則について説明します。

メソッド名は、英語名の場合、先頭を小文字にします（※注：Javaの場合です。言語

によっては、メソッドの先頭を大文字にするものなどがあります）。複数の単語で構成さ

れる場合、単語の区切りを大文字にして定義します。「print_arrays」ではなく、

「printArrays」というメソッド名になります。

メソッドの処理が、「～を行う」という場合、メソッド名は動詞ではじまります。たと

えば「配列を表示する」であれば、「arrayPrint」ではなく、「printArray」となります。

また、「現在の時間を取得する」であれば「getCurrentTime」となります。

9-5

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

170

09_Java_part2_chap09.qx 08.1.30 16:21 ページ170

booleanを返すようなメソッドであれば、第6章8節の「boolean型の変数名」と同じ

ように、「isXxx」や「hasXxx」といったメソッド名を付けます。

きちんとした名前を付ける（名前重要）
メソッド名は、メソッドが行うことをすべて説明しているような名前にすることが重

要です。これは、変数名の場合と同様です。名前に略語を用いるかという判断も、変数

名の場合と同様に行ってください。

動詞と名詞の関係
「動詞＋名詞」のようなメソッド名になる場合があります。たとえば、pr in t

Document();やcalculateAverage();などです。

オブジェクト指向言語であるJavaの場合、Document.print();やdocument.print();な

どと、「print()」というメソッドの呼び出しを行うことができます。Documentはクラス

であり、documentはオブジェクトです。これについては、第12章「オブジェクト指向」

以降の章で説明します。このように、メソッド名の前に記述されている単語から「名詞」

を記述せずに、「動詞」のみで十分なメソッド名になることもあります。

ただし、print();のように、メソッドの前になにも記述せずにメソッドの呼び出しがで

きる「staticインポート」という機能を使う場面が想定されるようであれば、名詞も含め

た方がよいメソッド名になります。staticインポートについては、第10章「クラスを利

用する」で説明します。

反意語の使用
プログラミングしていると、ある機能（メソッド）に対する反対の意味を持った機能

（メソッド）を作る場合が多くあります。たとえば、「ファイルを開く／ファイルを閉じ

る」「最小値を求める／最大値を求める」「文字を表示する／文字を隠す」などが考えら

れます。そのような場合、メソッド名に反意語の組を用いると一貫性が保ちやすくなり、

コードの読みやすさにもつながります。

次の表に一般的な反意語の組をあげました。

'表9-5-1 反意語の組

171

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

add/remove begin/end

first/last increment/decrement

next/previous old/new

show/hide source/destination

create/destroy get/set get/release

insert/delete lock/unlock min/max

open/close put/get send/receive

source/target start/stop up/down

09_Java_part2_chap09.qx 08.1.30 16:21 ページ171

変数の寿命

変に聞こえるかもしれませんが、変数には「寿命」があります。プログラムを作るう

えで変数は必要なものですが、変数の寿命が長いと変数に気を使う必要が増えてきます。

変数を扱いやすくするため、変数の寿命は短くする必要があります。この節では、変数

の寿命を短くする方法と、なぜ、変数の寿命は短い方がよいのかを具体的に説明します。

変数のスコープ
変数には寿命があり、寿命は長い場合も短い場合もあります。この寿命のことを「ス

コープ（Scope）」と呼びます。「可視性」と呼ぶ場合もあります。

この、変数のスコープとは、コードのどの範囲まで知れ渡っているのかというもので、

具体的には、どの範囲で参照可能なのかを意味します。

Sample9_5のコードを見てください。変数が7つ出ています。①引数のargs、②

longVariable、③ループ変数の i、④mediumVariable、⑤shortVariable、⑥ lastVariable、

⑦クラス変数のclassVariableの7つです。これをスコープの広い順に並べ替えると、次

のようになります。

⑦classVariable

①引数のargs

②longVariable

③ループ変数のi

④mediumVariable

⑤shortVariable

⑥lastVariable

●スコープ

public class Sample9_5 {

public static void main(String[] args) {

int longVariable = 0;

for (int i = 0; i < args.length; i++) {

int mediumVariable = 0;

if (args.length == 1) {

int shortVariable = 0;

}

}

9-6

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

172

①②⑦
③

④
⑤

⑥

09_Java_part2_chap09.qx 08.1.30 16:21 ページ172

int lastVariable = 0;

}

private static int classVariable = 0;

}

変数のスコープは、基本的には変数が宣言されているブロックの中ということになり

ます。クラス変数であれば、そのクラスに定義されたメソッドのどこからでも参照可能

です。classVariableはmainメソッド内で参照できますし、mediumVariableは、for文の

外では参照できません。また、メソッド内に定義されたローカル変数は、宣言された行

からブロックが終了するまでの間では参照可能です。つまり、lastVariableはfor文の前

では参照できません。

スコープを最小限に抑える
変数のスコープについて考えた場合、クラス変数のようにスコープが広い場合と、ル

ープ変数のようにスコープが狭い場合では、次のようなメリット、デメリットがありま

す。

'表9-6-1 スコープによるメリット／デメリット

これらのメリット、デメリットが、具体的にどのような場合なのかを説明します。

まず、スコープが広い場合のメリットの「参照が容易」とは、クラス変数などを参照

する場合についてです。クラス変数への参照は、そのクラスに存在するどのメソッドか

らでも可能です。参照することに関しては、こちらの方が便利でしょう。しかし、その

値はさまざまな箇所で使用されている可能性があるので、値を参照するだけならよいで

すが、値を代入した場合にその影響範囲を把握する必要が出てきます。あるメソッドが

きちんと動作すればよいのではなく、すべてのメソッドがきちんと動作する必要がある

からです。

次に、スコープが狭い場合のメリットの「理解しやすい」とは、ループ変数やループ

内に定義された変数などは特定の箇所のみでしか参照できないので、変数がどのように

使われているのかが理解しやすいということです。その代わり、ループ変数はループブ

ロックの外では参照できないなど、つねに変数を参照することができるわけではありま

せん。

変数を使用する場合、「理解しやすさ」と「便利さ」のトレードオフになります。

173

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

メリット

スコープが広い場合 参照が容易

スコープが狭い場合 理解しやすい

デメリット

使用されている場所を把握する必要がある

つねに参照できない

⑦ ⑥

09_Java_part2_chap09.qx 08.1.30 16:21 ページ173

■図9-6-1 「理解しやすさ」と「便利さ」のトレードオフ

バグのないプログラムを作るには、コードの中身をきちんと把握していなければなり

ません。99％把握すればよいのではなく、100％把握しなければなりません。今日（こ

んにち）のプログラムの規模は非常に大きいものになっています。一度にそのすべてを

把握するということは非常に困難です。一方、スコープの狭い変数を使用した場合は、

そのメソッド内、あるいはそのループ内をバグのないコードにしておけば、他のメソッ

ドのことまで気を使う必要がなくなります。

つまり、変数のスコープはできるだけ狭くした方がよいと言えます。

それでも、スコープの広い便利さを取る人がいるかもしれません。しかしそれは、コ

ードを書く場合に便利であるだけで、コードを読む場合には困難になります。スコープ

が狭ければ、コードを読むことが容易になります。ではその場合、コードを書くことが

困難かというと、ほとんど差は出ないでしょう。

スコープを最小限に抑えるための方法
それでは、スコープを小さくするための方法をいくつか紹介しましょう。

q ループ変数など、ループ内で使用する変数はループ内で定義する

●よい例　○

public static void main(String[] args) {

for (int i=0; i<data.length; i++) {

int temporary = data[i];

（……中略……）

}

●悪い例　×

public static void main(String[] args) {

int i = 0;

int temporary = 0;

（……中略……）

for (; i<data.length; i++) {

temporary = data[i];

便利さ�

理解しやすさ�

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

174

09_Java_part2_chap09.qx 08.1.30 16:21 ページ174

（……中略……）

}

これは、for文をif文に置き換えた場合でも同様です。

q 変数を宣言する場合は、使用する直前に宣言する

●よい例　○

public static void main(String[] args) {

（……中略……）

int sum = getSum(data);

（……中略……）

int average = getAverage(data);

●悪い例　×

public static void main(String[] args) {

int sum;

int average;

（……中略……）

sum = getSum(data);

（……中略……）

average = getAverage(data);

q 関連するステートメントはまとめて記述する

●よい例　○

int[] oldData = getOldData();

int oldSum = getSum(oldData);

int oldAverage = oldSum/oldData.length;

int[] newData = getNewData();

int newSum = getSum(newData);

int newAverage = newSum/newData.length;

●悪い例　×

int[] oldData = getOldData();

int oldSum = getSum(oldData);

int[] newData = getNewData();

int newSum = getSum(newData);

175

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ175

int oldAverage = oldSum/oldData.length;

int newAverage = newSum/newData.length;

q 関連するステートメントをまとめて別メソッドにする

●よい例　○

int[] oldData = getOldData();

int oldAverage = getAverage(oldData);

int[] newData = getNewData();

int newAverage = getAverage(newData);

●悪い例　×

int[] oldData = getOldData();

int oldSum = getSum(oldData);

int oldAverage = oldSum/oldData.length;

int[] newData = getNewData();

int newSum = getSum(newData);

int newAverage = newSum/newData.length;

q 最も狭いスコープからはじめて、必要に応じてスコープを広くする

変数のスコープの広さを狭くするという作業は、狭いスコープを広くする作業よりも

はるかに難しい作業です。ですので、適切なスコープが不明な場合は、最初はなるべく

狭いスコープにしてコーディングするとよいでしょう。

コードの深さ

コードには深さというものがあります。深いコードは読み手に負担がかかります。ど

ういったものが深いコードなのか、また深くしないためにはどうしたらよいのか。これ

らについて説明します。

ネストの深いコードと浅いコード
Sample9_6のコードを見てください。これは、変数charsの中身がJavaという文字の

集合であった場合に、標準出力を行います。それ以外のときにはなにもしません。

●ネストが深いコード

public class Sample9_6 {

public static void main(String[] args) {

9-7

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

176

09_Java_part2_chap09.qx 08.1.30 16:21 ページ176

char[] chars = { 'J', 'a', 'v', 'a' };

if (chars.length == 4) {

if (chars[0] == 'J') {

if (chars[1] == 'a') {

if (chars[2] == 'v') {

if (chars[3] == 'a') {

System.out.println("charsの中身はJavaで

した");

}

}

}

}

}

}

}

charsの配列の長さが4であるかを確認し、charsの先頭から文字が一致しているかを

確認しています。しかし、このコードはifのネストが5つもあり、お世辞にもよいとは言

えません。このコードは「ネストが深い」と言います。

ネストを浅くするテクニック
ネストが深いコードは、一般的にバグが発生しやすく、また、コードを理解すること

も困難になります。そこで、ネストを浅くするためのテクニックを紹介します。

q 条件を同じ階層に記述する

●Sample9_6のコードを改良した例（Sample9_7.java）

public class Sample9_7 {

public static void main(String[] args) {

char[] chars = { 'J', 'a', 'v', 'a' };

if (chars.length != 4) {

return;

}

if (chars[0] != 'J') {

return;

}

if (chars[1] != 'a') {

return;

}

if (chars[2] != 'v') {

177

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ177

return;

}

if (chars[3] != 'a') {

return;

}

System.out.println("charsの中身はJavaでした");

}

}

条件に一致しないとわかった時点でreturnなどと記述し、その後の処理が行われない

ようにします。

q 再評価し、同じ階層に記述する

● ifが2重に記述されているコード

public static void main(String[] args) {

if (isA()) {

処理その1();

if (isB()) {

処理その2();

}

}

}

前述のようなコードがあった場合、次のようなコードに書き直すことができます。

● ifが2つ並列に記述されているコード

public static void main(String[] args) {

boolean isA = isA();

if (isA) {

処理その1();

}

if (isA && isB()) {

処理その2();

}

}

2つ目の条件判定時に、再度 isAという評価結果を参照することによって、ネストを浅

くすることができます。

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

178

09_Java_part2_chap09.qx 08.1.30 16:21 ページ178

q if文やfor文などのブロックの内容をメソッドとして切り出す

先ほどのコードを例に取ると、次のようになります。修正したコードはネストの深さ

がどちらも同じになっています。

●処理の塊をメソッドとして切り出したコード

public static void main(String[] args) {

if (isA()) {

Aのときの処理();

}

}

private static void Aのときの処理() {

処理その1();

if (isB()) {

Bのときの処理();

}

}

まとめ

・クラス内に処理の塊をメソッドとして定義することができます。

・メソッドに引数を渡して処理させることができます。

・メソッドの呼び出し元は、戻り値を受け取ることができます。

・クラス内に、定数を定義することができます。

・クラス内に、static変数を定義することができます。

・変数は属しているブロック内でしか参照できません。

・参照できる範囲をスコープと呼びます。

・スコープが狭い方が理解しやすいコードになります。

・コードにはネストが浅いコードとネストが深いコードがあります。

・条件を同じ階層に記述することによってネストを浅くすることができます。

・条件を再評価することによってネストを浅くすることができます。

・if文やfor文などのブロックの内容をメソッドとして切り出すことでネストを浅くする

ことができます。

メソッドをきちんと分割すると、自然にバグの少ないコードを記述できるようになり

ます。処理の塊があれば、きちんとメソッドに分割するようにしましょう。

理解しやすいコードを記述するために、変数のスコープをできるだけ小さくします。

また、ネストが深い場合、コードの可読性が悪くなり、さらに、処理の整合性が取りに

9-8

179

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ179

くくなるため、バグを誘発する危険性があります。ネストが深くならないように心がけ

ましょう。

クイズ

Q9-1

次の を埋めてください。

外部から見たプログラムの動作を変えずにソースコードの内部構造を整理すること

を と呼びます。

Q9-2

次の を埋めてください。

定数名は、 と_を組み合わせた名前にします。

Q9-3

次の を埋めてください。

Eclipseの機能では、 キーを押すとメソッドの抽出を行うことができます。

Q9-4

Sample7_5を改善したコードがSample9_4ですが、さらにSample9_4を改善するとし

たら、どのように改善しますか。また、Sample9_4を改善したコードをQuiz9_1という

クラス名で作成してください。

Q9-5

本書で取り上げたスコープを最小限に抑えるための方法について、次の に当て

はまるものを以下の選択肢から選んでください。

・ 変数など、 内で使用する変数は 内で定義する

・変数を宣言する場合は、 で宣言する

・ はまとめて記述する

・ をまとめて別メソッドにする

・最も狭い からはじめて、必要に応じて を広くするEE

D

C

B

AAA

9-9

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

180

09_Java_part2_chap09.qx 08.1.30 16:21 ページ180

a）ループ

b）関連するステートメント

c）クラス変数

d）文字列

e）スコープ

f）定数

g）使用する直前

h）配列

i）クラス変数

Q9-6

次のプログラムには変数が7つ存在します。それぞれの変数のスコープを示してくだ

さい。

●Sample9_5.java

public class Sample9_5 {

public static void main(String[] args) {

int longVariable = 0;

for (int i = 0; i < args.length; i++) {

int mediumVariable = 0;

if (args.length == 1) {

int shortVariable = 0;

}

}

int lastVariable = 0;

}

private static int classVariable = 0;

}

Q9-7

次のコードのネストを浅くしてください。

●Quiz9_2.java

public class Quiz9_2 {

public static void method(int value) {

181

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ181

if (value != 0) {

if (value % 2 == 0) {

System.out.println("valueは偶数です");

} else {

System.out.println("valueは奇数です");

}

} else {

System.out.println("valueはゼロです");

}

}

}

Q9-8

次のコードは、ある映画のチケットの料金計算をするコードです。料金体系は次の表

の通りで、いちばん安くなる価格が適用されます。このコードのネストを浅くしてくだ

さい。

'表9-9-1 料金体系

●Quiz9_3.java

public class Quiz9_3 {

public static int 料金を計算する(boolean isMale, int age, boolean

isWednesday) {

if (age <= 3) {

return 0;

} else {

if (age <= 15) {

return 1000;

}

if (isMale == false) {

if (isWednesday == true) {

return 1000;

}

}

if (60 <= age) {

return 1200;

第
1

部
　
基
礎
編

第
2

部
　
文
法
編

第
3

部
　
発
展
編

付
録

182

一般 1800円

3歳以下 無料

小人（15歳以下） 1000円

レディースデー（水曜日） 1000円

シニア（60歳以上） 1200円

09_Java_part2_chap09.qx 08.1.30 16:21 ページ182

}

}

return 1800;

}

}

183

9

こ
れ
ま
で
の
コ
ー
ド
を
改
善
す
る

09_Java_part2_chap09.qx 08.1.30 16:21 ページ183

09_Java_part2_chap09.qx 08.1.30 16:21 ページ184

